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ABSTRACT 

The authors consider a transport process in a slab bounded by two parallel planes. 
Radiation is both absorbed and scattered isotropically. The radiation is due to con- 
tinuously distributed internal isotropic sources. The aim is to estimate the distribution 
of the internal sources based on experimental measurements of the angular dependence 
of the emergent radiation. 

First, a system of differential-integral equations for the emergent radiation is deduced. 
These are approximated by a system of ordinary differential equations, and some 
numerical results are given. Quasi-linearization is then used to solve the inverse problem 
numerically. The results of some computational experiments are given which indicate the 
sensitivity of the estimates of the source distribution to the observational errors in the 
emergent-radiation measurements. The methods can be generalized to the cases of 
anisotropic scattering and shell geometry. 

INTRODUCTION 

In an earlier paper [l] we outlined a method for determining the distribution 
of sources within a slab, given measurements of the emergent radiation. The purpose 
of this paper is to present the results of some numerical experiments. First we 
indicate the method, which takes full advantage of the modern computer’s ability 
to integrate large systems of ordinary differential equations. This is followed by a 
presentation of some typical results. Errors in the observations produce errors in 
the estimation of the source distribution. Some indication of the seriousness of 
this problem is included. Lastly, a related approach to the inverse problem is 
described, and some numerical results are presented. The lines of approach sketched 
appear quite promising. 

1 This research is sponsored by the United States Air Force under Project RAND-Contract 
NO. AF 49(638)-1700. 
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1. BASIC EQUATION FOR EMERGENT INTENSITY 

Consider a homogeneous slab with horizontal plane parallel surfaces separated 
by a distance x,, . The slab absorbs radiation and scatters it isotropically, with 
albedo for single scattering h. Isotropically emitting sources of radiation are con- 
tained in the slab. The strength of these sources B(y) depends only on y, 0 < y < x,, , 
the altitude above the bottom surface. The sources may be viewed as being arranged 
in layers. 

Let 

t(v, X) = the intensity of radiation escaping from the upper surface of 
a slab of thickness x in a direction whose direction cosine 
with respect to the upward-directed vertical is U. 

(1) 

In an earlier note [l], we obtained the equation for t(v, X) by an imbedding 
approach, in which the thickness x is varied by the addition of thin layers at the 
top. Let X = X(0, X) and Y = Y(v, X) be the X and Y functions of Chandra- 
sekhar [2], respectively. The integro-differential equation for f is 

t, = ; 1 -r + B(x) x(~, x) + 4 xb, 4 j: w9 4 do’/ J (2) 

(0, 0) = 0. 

The first term on the right represents an absorptive loss due to the addition of an 
elementary layer at the top, the second term represents emission and subsequent 
emergence of additional radiation, and the third term represents the interaction 
of radiation at the top, with subsequent emergence. 

The X and Y functions satisfy the integro-differential equations 

x, = ; Y(v, x) j: Y(u’, x) $ ) X(u, 0) = I. (3) 

YE = - ; Y(Y, x) + ; X(0, x) j: Y(u’, x) $ ) Y(v, 0) = 1. (4) 

Equations (2)-(4) form a complete system of equations for the determination of 
emergent intensity. 

To obtain the computational solution, we approximate the system of equations 
by a system of ordinary differential equations. For this purpose, we replace the 
integrals by sums. We approximate an integral of a function using a Gaussian 
quadrature formula of order N, 

(5) 
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where wi , i = 1, 2 ,..., N, are the Christoffel numbers, and ui , i = I,2 ,..., N, are 
the abscissas for the evaluation of the integrand. These are tabulated in [3]. From 
previous experience [4], [5], we expect that N = 7 will yield high accuracy. 

Let us introduce the function X,(x), Y&X), and tl(x), 0 < x < x,, , as solutions 
of the system 

ii=~j-t~+Bxi+~x~~tjq~, ti(0) = 0, 
z 9% 

(7) 

(8) 

i = 1, 2 ,..., N. 

The dot indicates differentiation with respect to X. The integration of this system 
with the complete set of initial conditions is a routine matter on a modern computer 
for 0 < x < x0 . For a given source distribution B(y), 0 < y f X, , we obtain 
the intensities of the emergent radiation at the top, t(vi , x,,) for i = 1,2,...,N. 

2. SOME NUMERICAL RESULTS FOR EMERGENT INTENSITY 

We use the basic equations of the previous section to compute emergent 
intensities for a variety of cases. First, we perform a series of experiments for the 
purpose of checking the FORTRAN program. We use N = 7 for the Gaussian 
quadratures and take an integration step of length 0.005. We consider the case of 
constant source distribution with B(y) = 1 .O and albedo 1.0. We compute t(v) 
for a slab of thickness 1.0. Sobolev [6] gives the formula relating t to X and Y 
functions and moments of X and Y, 

t(u) = [X(u) - Y(u)] 11 - ; [ c’ X(u) du - J:, Y(u) d”] 1-l. 
“0 

(9) 

The integrals of Eq. (9) are approximated by sums, using an N-point Gaussian 
quadrature formula. The right-hand side of Eq. (9) is easily calculated. It is 
compared with the computed t(u). The formula is satisfied to at least six significant 
figures. For a thickness of 0.2 and v = 0.5, we compute t = 0.445552. The value 
0.445 is given by Horak [7]. Figure 1 is a plot of emergent intensity t as a function 
of angle of emergence, arc cosine u, for a slab of thickness 1.5, albedo 1.0, and 
B 3 1.0. 
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FIG. 1. Emergent intensity for a slab as a function of angle of emergence with B = 1. 

Consider the case of parallel rays of radiation of net flux rr per unit normal area 
incident, with direction cosine U, on the top of a slab which scatters light isotrop- 
ically with albedo A. We can compute the radiation which is diffusely reflected into 
the direction whose cosine is U, as reported in [8]. The emergent radiation for this 
case is the same as the radiation emerging from a slab possessing layers of emitting 
sources with a distribution 

B(y) = i exp (- thickn~s2)e 

We produce the emergent intensity both ways and compare the results. We find 
agreement to five to six significant figures, for a slab having albedo 1 .O, thickness 10, 
and with incident direction cosine u = 0.5. 

Next, we consider a series of slabs having thickness 1.5 and albedo 1.0. We call 
Slab 1 the slab which possesses a layer of sources of unit strength at the bottom, 
such that the source distribution function is 

B(y) = 1.0, for 0 <y < + (1.5) 
(11) 

zzx 0.0, for + (1.5) < y d 1.5. 
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Let Slab 2 refer to a slab with a layer of sources such that 

B(y) = 0.0, for 0 < y < 3 (1.5) 

= 1.0, for+(1.5) <y <5(1.5) 

= 0.0, for S(1.5) <y < 1.5. 

1 

1 

0 

(12) 

Angle of emergence (degrees) 
FIG. 2. Emergent intensities for slabs l-7 as a function of angle of emergence. 
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Let Slabs 3-7 be defined in a similar fashion. Slab 7 then has 

B(y) = 0.0, for 0 < y < Q (1.5) 
(13) 

= 1.0, for $ (1.5) \< y < 1.5. 

The emergent intensities for these seven slabs are plotted in Fig. 2. The curve for 
Slab 7 in general lies above the other curves, since the sources are found closest to 
the top of the medium. 

Due to the linearity of the basic equation for emergent intensity, this quantity 
may be computed with the aid of a superposition property. Let P)(y) be source 
distributions for K slabs, i = 1, 2 ,..., K, and let C)(v) be the corresponding 
emergent intensities. Then, if we have a slab whose distribution is 

Bb) = F CtByy), 
i=l 

(14) 

where the c’s are constants, and if we write t(v) as the corresponding emergent 
intensity, then t(u) may be expressed as 

t(U) = t Cit(‘)(U)* 
i-l 

(15) 

Realizing that t(u)-for the case B = 1 .O, with thickness 1.5 and albedo l.O-may 
be represented as the sum of the intensities for Slabs 1 through 7, we perform the 
necessary addition and find complete agreement with the intensity which is directly 
calculated, and which is plotted in Fig. 1. 

Now let us turn to a slab of thickness 1.5 with albedo 1.0, and having a layer 
of emitting sources embedded within it. The layer is centered at altitude 0.55, and 
is of approximate thickness 0.3, with maximum strength about 0.9. We represent 
this situation by the distribution function 

B(y) = O.S[tanh 10 * (u - 0.4) - tanh 10 . (y - 0.7)], (16) 

for 0 < y < 1.5, shown in Fig. 3. The intensity of radiation leaving the top of 
this medium in various directions is then shown in Fig. 4. As is to be expected, the 
curve resembles that for Slab 3 of Fig. 2, and is not at all like that of Fig. 1 which 
pertains to B = 1.0. 

Having gained some experience with the direct problem of calculating emergent 
intensities, we turn our attention to the inverse problem of estimating source 
distributions from knowledge of emergent intensities. 
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FIG. 3. Source distribution function. 
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FIG. 4. Emergent intensity for a slab as a function of angle of emergence. 
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3. ESTIMATION OF SOURCE DISTRIBUTIONS 

We pose the following inverse problem: Given the external intensity pattern 
for an emitting slab, determine the internal distribution of sources. For preciseness, 
consider the case in which the distribution function has the form 

B(y) = O.S[tanh lO(y - a) - tanh lO(y - ZI)], (17) 

where a and b are constants, and 0 < y < 1.5. The thickness of the slab is known 
to be 1.5, and the albedo is 1.0. Suppose that the intensity has been measured in 
seven directions whose direction cosines are roots of the shifted Legendre poly- 
nomial of degree 7, 

t&.5) s b, , i = 1, 2 ,..., 7. (18) 

The objective is to estimate B(y) by determining the parameters a and b. Let the 
criterion be the minimization of the sum of the squares of the deviations between 
the theoretical solution ti(1.5) and the observations 6, , i.e., we wish to obtain 

where 
min S, (19) 

S = i {t&.5) - b,}2. w-9 

We use the method of quasilinearization described in [5]. This is discussed more 
fully in [9] and [lo]. The X and Y functions which appear in the equations for 
f(u) are found as solutions of a system of ordinary differential equations with 
known initial conditions. They are hence to be thought of as known functions of 
thickness. For the problem at hand, the basic differential equations are 

b = 0, (22) 

r; = 0. (23) 

Equations (22) and (23) show that the constants a and b are to be dependent 
variables with zero derivatives. The independent variable is thickness x. The 
intensities satisfy known initial conditions, 

f<(O) = 0, i = 1, 2,.. ., 7. (24) . 

The initial conditions for a and b are unknown, and it is precisely these initial 
values which we seek. 
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Let us suppose that we have the initial guesses u” and b” . A numerical integration 
of the system of nonlinear Eqs. (21)-(23) with a(0) = u” and b(0) = b” generates 
the approximation of the intensities &O(x), 0 < x < 1.5. The next approximation 
al, bl, and Q(x) is found as the solution of a linear system of differential equations. 
These equations are obtained by expanding the right-hand sides of Eqs. (21)-(23) 
about the current approximation in a Taylor expansion and keeping only the 
linear terms. 

We use the method of complementary solutions to effect the numerical solution. 
That is, we express the new approximation as a linear combination of comple- 
mentary solutions and a particular solution. These solutions are generated by a 
numerical integration of the linear differential equations with a complete set of 
initial conditions. The multipliers of the complementary solutions are determined 
so as to minimize the sum S, which is, for the first approximation, 

s = i: (ti’(1.5) - bi}Z. (25) 
i=l 

They are found by solving a system of linear algebraic equations of order seven. 
These multipliers give us new estimates of ~2 and b, as well as the complete next 
approximation t&) for 0 < x < 1.5 and i = 1,2 ,..., 7. 

The procedure is repeated to produce higher approximations. A sufficiently 
good initial approximation leads to quadratic convergence; that is, the number of 
correct digits in each estimate is doubled asymptotically. Practically speaking, 
this means that only a few iterations are required. 

4. SOME NUMERICAL RESULTS FOR THE ESTIMATION 

OF SOURCE DISTRIBUTIONS 

Some computational experiments are performed for the estimation of the source 
distribution. The true values of a and b in Eq. (17) are 0.4 and 0.7, respectively. 
The function B is shown in Fig. 3, and the function t(u) in Fig. 4. Using seven 
accurate values of the emergent intensity, and starting with moderately poor 
initial guesses for the constants, we quickly converge to approximately the correct 
values. Next, we begin with correct values of a and b and go through three iterations 
of the method. We expect to retain the correct values as estimates. However, 
the estimates change slightly to 

a z 0.398 and b z 0.699. (26) 

In the next three experiments, errors of varying amounts are introduced into 
the observations. Seven random numbers with a Gaussian distribution with 0.0 
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mean and standard deviation 1.0 are generated. These numbers are multiplied 
by 0.001 (0.1x), 0.01 (lx), and 0.02 (2%) times the correct intensities, respectively, 
in the three runs. The products are added to the accurate measurements to produce 
noisy measurements. Four iterations are carried out per run. The accuracies of the 
estimates of a and b are presented in Table I. As a spot check, the estimated 
strength of the sources at altitude 0.5 is compared with the correct value, and the 
error is given in the table. The last column of the table lists the sums of squares 
of deviations, S. 

TABLE I 
SOME NUMERICAL RESULTS 

% % % % 
Error in 

observations 

0.0 
0.1 
1.0 
2.0 

Error in Error in Error in SllIll 
a b B(0.5) s 

-- -0.4 -0.14 +0.35 0.2 x 10-g 
-1.7 -0.69 +1.4 0.1 x 10-h 

-14. -5.8 +6.4 0.8 x 10-4 
-29.5 -12. -t3.9 0.3 x 10-a 

From these results, it seems that the layer of sources may be shifted slightly up 
or down, with little effect on the emergent radiation. It is of interest to know the 
change in t(u) due to a change in a and due to a change in b. Let 

q(x) = at,(x)/aa, (27) 

zi(x) = &(x)/ab. (28) 

We perform partial differentiations on both sides of Eq. (8) and obtain 

where 

B, = g = -5[1 - tanh2 10(x - 0.4)], 

Bb = g = +5[1 - tanh2 10(x - 0.7)]. 

For initial conditions, differentiation yields 

q(O) = 0, 

q(O) = 0. 

(31) 

(32) 

(33) 

(34) 
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It is apparent that U&C) and zi(x) satisfy the same differential equations 
initial conditions as &(x); only the forcing functions are different. We con 
ui and zi . The results are presented in Figs. 5 and 6. In Fig. 5, we show 

a xL1.5 = $ = 
cl! 1.5 

-Z(~,XL1.5 = - g Ins1 5, 

plotted against direction cosine v. For comparison, Fig. 6, a replot of Fig. 
given. It appears that, if a is changed by a certain amount, b can be changed 
corresponding amount to keep the intensity pattern virtually the same. 

Direction cosine, v 

FIG. 5. Perturbation functions for a slab. 

and 
lpute 

4, is 
by a 
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FIG. 6. Emergent intensity for a slab as a function of direction cosine. 

5. ANOTHER APPROACH TO THE ESTIMATION PROBLEM 

The superposition principle provides us with another approach to the problem 
of estimating source distributions. Let us again consider the Slabs l-7 of Section II. 
Let the source distribution for the jth slab be B(j), and let the outgoing intensity 
in the direction whose cosine is vi be fi U) Let us suppose that we have a slab whose . 
source distribution /3 can be written as a linear combination of the seven sources 
in the seven different layers, 

,g = i akBck', 
k=l 

(35) 

where clll , (Ye ,..., c1/, are seven constants. Then the intensity in the ith direction 7i 
can be expressed as 

Ti = arty, i = 1, 2 ,..., 7. 
k=l 

(36) 
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Conversely, knowing the emergent intensity pattern for the entire slab and the 
pattern that results from a unit source in each layer, we may solve the linear 
algebraic equations for the multipliers 01~ , CL~ ,..., 01, . This provides us with estimates 
of the strength in each layer. 

We perform some computational experiments to see if we can determine the 
multipliers. First we let 7i be the accurately known emergent intensity in the ith 
direction, for i = I, 2 ,..., 7, for a slab which is identical to Slab 1. Then, as a 
result of solving system (36), we find that 

011 = 1 > a2 = o/3 = *.. zzz 01, = 0, 

correct to eight significant figures. We perform similar experiments for slabs which 
are identical to Slabs 2-7, respectively, and we obtain the correct estimates of the 
multipliers. 

Next, we introduce errors into the values of the intensities {Q-J. We repeat the 
experiments with random errors of 1% and 0.1%. The experiments fail, yielding 
constants which are completely erroneous. An examination of the inverse of the 
matrix whose elements are (tj”)} shows large positive and negative numbers. Thus, 
it seems that seven slightly inaccurate measurements of emergent intensity are not 
sufficient for the estimation of the emitting source distribution via this procedure. 
Special filtering techniques, such as are discussed in [ 111, will have to be employed. 
This point will be discussed in subsequent papers. 

6. DISCUSSION 

The foregoing results show that extremely high accuracies in the knowledge of 
external intensities in seven directions are required for satisfactory estimations of 
internal source distributions. (Of course, use of other criteria, such as the minimax 
criterion, could change this evaluation. In addition, various special techniques for 
solving ill-conditioned linear systems are available [II].) This fact suggests that 
increasing the number of observations may help to improve the estimates. The 
discussions of preceding sectionshave been limited to the specialemergent directions 
arc cosine ui , i = 1,2 ,..., N, where the cosines are roots of shifted Legendre 
polynomials. The purpose of producing t(v, X) for these cosines is to approximate 
the integral s,’ t(v, x) dv with high precision. To compute the intensity t(u, x) for 
an arbitrary direction cosine U, we add to the system of differential Eqs. (6)-(8) 
the following equations: 

&u, x) = ; Y(u, x) f Yj z ) 
j=l 3 

X(24,0) = 1, (38) 
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e4 4 = - ; Y(u, x) + “z X(24, x) 2 Yj ff, Y(u, 0) = 1, (39) 
j=l 3 

t(U, X) = d -t(U, X) + BX(U, X) + i X(24, X) 5 tjWj/, 

I  j-1 

and proceed as before. 

t(z4,0) = 0, (40) 

Additional observations of I for arbitrary directions may be included in the 
inverse problem. For each new cosine U, three more differential equations are to 
be added to the system (21)-(23). This in turn results in more linear differential 
equations to be integrated in each approximation. Yet, the effort may be valuable 
in producing an improved estimation of the structure of the sources. 
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